
THEORETICAL STUDY OF FLOW ABOUT SINGLE AND DOUBLE 

RECESSES IN A PLANE CHANNEL 

A. I. Malorova UDC 532.517.4 

A two-parameter model of turbulence is used to calculate flow characteristics in 
a channel with a sudden expansion in the form of two recesses with in the expan- 
sion range 1.3-4.0. The llmlts of appllcabillty of the Borda formula are evalu- 
ated. 

Turbulent separated flows after recesses in pipes and channels are of great interest to 
investigators. Such flows have been studied the most in circular pipes. The work [1] pre- 
sented detailed measurements of velocitles and turbulence characteristics in a circular pipe 
with a sudden expansion. Data on the static pressure distribution on a pipe wall was co,,,un- 
icated in [2, 3]. A survey of studies of plane flows beyond recesses was offered in [4]. 
Several works have presented information on the length of the separation zone and the dis- 
tribution of the mean velocities and turbulence characteristics. Pressure distributions on 
the walls have been reported mainly for the case of a recess in a free flow. There has been 
less study of flow in a plane channel wlth a sudden expansion in the form of two recesses 
symmetrical relative to the middle plane. We know only of the work of Abbott and Kleln [5], 
which represents an expanded experimental study of flows of an incompressible liquid in a 
channel with a single-stage and two-stage expansion of degrees from i.i to 5. Measurements 
of the lengths of the separation zones were obtained by the method of visualization with the 
aid of an oil film. The authors also present a small number of mean-velocit-y profiles and, 
for the case of a single recess, turbulence intensities. 

Presented below are results of a theoretical study of the turbulent flow of an incom- 
pressible liquid in a plane channel with a sudden expansion in the form of one and two re- 
cesses. 

i. The system of equations for the steady turbulentmotion of an incompressible liquid 
has the form [6] 
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To determine ~t, it was proposed in [7] that a two-parameter turbulence model k--r be 
used (k is the eddy kinetic energy and ~ is the rate of dissipation of the eddy ~ kinetic 
energy) : 
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F i g .  I. Dependence of t h e  lengths of the 
separation zones on the degree of expan- 
sion: 1 and 2) double and single recesses, 
respectively; 3, 4 ,  and 6) experiment [5] 
(3, 6 are for a double recess~ 4 is for a 
single recess); 5) single recess, measure- 
ments obtained with a laser Doppler anemo- 
meter [4]. 

Here, S represents source terms of the transfer equations: 

S h = ~tFh F 8; 

Ss = C ~ + ' t F k - - C s , @  ; 

- 2 ( o, / + 2 ~ T + ( ~  / N + ~ / ; 

o k = I; o C ffi 1.3; C D = 0.09; Ce, = 1.44; C~a ffi 1.92 are constants of the model. 

In the process of solving Eqs. (i), we elimlnated the pressure from them by introduclng 
vortlcity ~, a varlable of the stream function ~, so that 

O@ O@ OV OU 
w = ~ ,  v - - - -  , ~ = , ( 3 )  
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and t h e n  c h o s e  a f i n i t e - d i f f e r e n c e  scheme [ 8 ] .  The r e s u l t i n g  s y s t e m  o f  a l g e b r a i c  e q u a t i o n s  
was solved by the Gauss--Seidel method. 

We assigned values of the stream function as the boundary condition on the impermeable 
walls. For the other variables, the boundary conditions were taken one cell of the differ- 
ence grid deeper into the flow, where we assumed satisfaction of the universal "wall law" [6]: 

U _ 1 In v.*n. nt _A, k u*2 u*3 
u* .• v ~ , 8 - -  ~n ' (4)  

here • = 0.41; A ffi 5.36; u* is the dynamic velocity; n is the distance to the wall. 

The values of @, fl~ k, and ~ were assigned in the inlet section of the channel, while 
"mild" boundary conditions were set for the outlet section: the longitudinal derivatives 
of all of the dependent varlables were qua1 to zero. 

Near the nodal point beyond the sudden expansion the flow is turbulent, so that the 
logarithmic law (4) was not used at points near this nodal point. In its place we set the 
condition of a drop in the streamline from the nodal point in the horizontal direction. We 
took the same value for the turbulence energy as in the boundary layer of the incoming 
flow. We found ~ by using the condition of proportlonallty of the turbulence scale in the 
mixing layer to the width of the layer [9]. After finding ~, ~, k, and ~, we used Eqs. (I) 
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to f ind  the  p r e s s u r e  g r a d i e n t ;  the p r e s s u r e  was determined by c a l c u l a t l n g  the i n t e g r a l  beg in-  
ning from the inlet section along the llne AC (Fig. i) of the channel and then perpendicular 
to it up to the walls. We used a uniform flnlte-difference grid. Systematic calculations 
performed with refinement of the grld showed that cells corresponding in size to (i/10)Ha 
along the channel and (1/20=1/30)HI over the channel height are sufficient. The calcula- 
tions were performed on a BESM-6 computer. 

2. Figure 1 shows the results of our theoretlcal study in comparison with experimental 
data from [5]. The results are presented in the form of the dependence of the relative 
lengths of the separation zones L/B (B is the depth of the recess) on the value of Ha/H,, 
characterizing the degree of expansion of the channel. It can be seen that the length of 
the separation zone is nearly constant in the case of a slngle recess and amounts to 7-8 
recess depths. However, in the case of a channel with an expansion in the form of two 
recesses and a degree of expansion greater than 1.5, the average flow becomes nonsymmetrlcal. 
As the degree of expansion is increased, the flow approaches one wall and creates a separa- 
tion zone with markedly different lengths (on the order of 10B and (3-4)3, at the walls. In 
the experiments in [5], the thickness of the boundary layer in the inlet channel was 1/4 of 
the channel height, while the Reynolds number of the incoming flow U,H,/v = 2 �9 104-5 �9 104 . 
The calculations were performed with different thicknesses of the boundary layer at the in- 
let: from a uniform flow to a fully developed turbulent flow, and within the range of Rey- 
nolds numbers I04-i0 ' . Branching of the symmetrical solution occurred regardless of the 
thickness of the boundary layer or the Reynolds number when H2/H, = 1.5. The spread Of 
empirical data in Fig. 1 for the "long" separation zone is connected with low-frequency 
fluctuations of the length of the zone inthe case of a high degree of channel expansion. 
No transverse fluctuations were seen in the experiments. On the average, the theoretical 
separatlon-zone lengths were close to the experimental values, whlchjustlfles the use of 
the steady-state equations of motion in the calculation. 

3. Among the flow characteristics which are important for engineering applications are 
the coefficient of statlc-pressure recovery~p and the coefficient of total-pressure loss 

in the channel: 

l /2U~ ' ~ . . . . . . . . .  l /2U~ = " (5 )  

In these formulas we average over the mass rate: 

.f P d m  
-~  ~ (S) 

. m  

(6) 

S is the cross-sectlonal area of the channel, m is the mass rate, and a Isthe energy coef- 
ficient of the velocity profile: 

] U2dm S~ 
= = (s) m m~" (7) 

In determining Cp and ~, it is usually assumed that the flows in the inlet and outlet 
sections of the channel are uniform and parallel and that the static pressure in the section 
of the sudden expansion is constant. Then the below Borda-- Carnot formula follows from the 
theorem of the conservation of momentum and mass, without allowance for friction on the walls 
[lO]: 

( ) i ) 
C 3 - 2 H1 l ' - -  H1 [ 1 - - H 1  2. (8) 

H~- H~" ' ~ ----" ~, H~, 

Figure 2 shows calculated distributions of the coefficients of statlc-pressure recovery 
and total-pressure loss along the channel with a unlformvelocity profile at the inlet and a 
Reynolds number of l0 s . The distance from the section of sudden expansion is referred to the 
depth of the recess. For control purposes, Fig. 2a shows results of measurements of the 
static pressure on the wall of a channel after a single recess [II]. Since the pressure 
changes little over the channel height after the flow reattachment point, the coefficient 
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Fig. 2. Theoretical change in the coefficient of 
static-pressurerecovery (a) and the coefficient of 
total-pressure loss (b) along the channel: i) Borda 
formula; 2) double recess; 3) single recess; 4) pres- 
sure at the wall of a channel beyond a slngle recess, 
experiment in [ii]. 

of pressure recovery on the wall is close to the average. It is apparent that the calcula- 
tion quite accurately predicts the pressure recovery beyond the zone of reversed currents. 
It should be noted that static pressure begins to decrease before the separation. The mini- 
mum value of C--p is reached at x/B = 1.5-2 and C--p passes through zero at x/B - 3-4. 

Due to the hlgh levels of turbulence, the velocity profiles beyond the flow separation 
zone are almost equilibrium proflles (the energy coefficients of the profiles, shown in 
Fig. 3a, are close to unity), so that~p rapidly increases to the maxlmumvalue. For the 
case of a single recess with Hi/Hi > 1.5, pressure in the section of the sudden expansion is 
almost constant ~FIE. 3c), so that the losses due to the shock are close to those calculated 
by Eq. (8). When Hi/Hffi ~1.5, the maxlmum value of C--p decreases due to a drop in bottom 
pressure as a result of curvature of the streamlines In the region above the separation zone 
and it approaches the values measured beyond the recess in the free flow. When Hi/Hi 93, 
the maximum of Cp decreases due to an increase in the loss connected ~rlth the hlgh relative 
levels of turbulence. When H=/HI~ 2.5, the zone of nearly constant~p extends far down- 
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Flg. 3. Flow eharacteristlcswlth Hi/H, = 1.33 and Hi/H, = 
3: distributions of the longltudlnal velocity component 
at the section x/B - 12 (a), turbulence energy at the section 
x/B - 12 (b), static pressure at the section of the sudden 
expansion (c); i) double recess, H=/H, - 3; 2 and 3) single 
recesses, Hi/H, = 3 and Hm/H, - 1.33, respectively. 

stream, while when Hi/H, > 2.5~p reaches its maximum near the reattachment point and then 
decreases due to the large losses to turbulent friction. Thus, the Borda-- Carnot formula 
is quite accurate withln the narrow range 2~-~HI/H,~2.5. Now let us consider a channel 
with a double recess. In this case, the static pressure in the section of sudden expansion 
is not constant for high degrees of expansion but instead increases at the end corresponding 
to the "long" separation zone (Fig. 3c). Thus, the losses due to the shock decrease com- 
pared to the case of a slngle recess, although the friction losses are high. A decrease 
in pressure at the wall toward which the flow is compressed increases the stablllty of the 
asymmetric flow. The flow expands in two stages in such a channel, which is~qulte evident 
from Fig. 2a: First there is a "short" separation zone at the wall and then a "long" sepa- 
ration zone, as though modeling the replacement of a double recess by two successive single 
recesses. Thls reduces the losses due to shock. Thus, the coefficient of statlc-pressure 
recovery and total-pressure loss is higher and the rate of increase in the loss lower In a 
channel wlth a double recess than in a channel wlth a slngle recess. 

Consequently, given the same degree of expansion, a sudden expansion in the form of two 
recesses located symmetrically relative to the middle plane is more efflclent than a sudden 
expansion in the form of a slngle recess. 

NOTATION 

x, y, Cartesian coordinates; U, V, mean velocity components; F, static pressure; H,, 
Hi, height of channels before and after the sudden expansion; U,, U=, mean veloclties in 
channels of height H, and H=; H = Hi for a single recess and H = (1/2)H= for a double 
recess; Urn, maximum velocity In the channel Of height H_,; E, depth of recess; ~o, mass-rate- 
mean pressure In the section of the sudden expansion; Cp, coefficient of statlc-pressure 
recovery; ~, coefficient of total-pressure loss; k, eddy kinetic energy; z, rate of dissi- 
pation of  eddy k i n e t i c  ene rgy ;  ~, v i s c o s i t y .  

LITERATURE CITED 

i. M.C. Chaturvedl, "Flow characteristics of axlsymmetrlc expansions," ASCE J. Hydraulic 
Div., 89, 61-92 (1963). 

2. J. Ackeret, "Aspects of internal flow," in: Fluid Mechanics of Internal Flow, Elsevier, 
Amsterdam (1967), pp. 266-270. 

3. Kangovi and Teiors, "Subsonic turbulent flow about an annular projection," Trans. ASME 
Ser. D, 101, No. 2, 150-160 (1979). 

4. F. Durst and C. Tropea, "Turbulent, backward-faclng flows in two-dlmensional duets and 
channels," In: Third Symposium on Turbulent Shear Flows, Penn State Univ. (1981), pp. 
18.1-18.6. 

5. Abbott and Klein, "Experlmental study of subsonic flow around single and double projec- 
tlons," Trans. ASME Set. D, 84, No. 3, 20-28 (1962). 

6. J.O. F~nze, Turbuleace, McGraw-Hill (1975). 
7. W.P. Jones and B. E. Launder, "The prediction of laminarization with a two equation 

model of turbulence," Int. J. Heat Mass Transfer, 15, 310-314 (1972). 

22 



8. D. B. Spalding, "A novel finite-difference formulation for differential expressions in- 
volving both first and second derivatives," Int. J. Num. Methods Eng., No. 4, 551-559 
(1972). 

9. G. N. Abramovich, Theory of Turbulent Jets [in Russian], Nauka, Moscow (1960). 
i0. G. N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1969). 
Ii. Kim, Klein, and Johnston, "Study of the reattachment of a turbulent shear layer: flow 

about an inverse recess," Trans. ASME Ser. D, 192, No. 3, 124-132 (1980). 

STABILITY LIMIT OF THERMALLY DRIVEN OSCILLATIONS IN A 

TUBE OF VARIABLE CROSS SECTION 

V. A. Sysoev and S. P. Gorbachev UDC 621.59:534.1:546.291 

The stability limit for helium in a tube of variable cross section is established 
and experimentally confirmed. 

As is known, in a nonisothermal tube with a closed heated end and the o t h e r  end placed 
in a cryostat with liquid helium, thermally driven oscillations may occur. Here, the heat 
flow to the liquid helium may increase by an order or more [1, 2]. 

One method of studying this phenomenon is determining the range of parameters of the 
system within which these oscillations may take place, i.e. finding the necessary condition 
for occurrence of the oscillations or solutions of the stability problem. This problem was 
examined in [3-6] for tubes of constant cross section. The present work studies the stabil- 
ity of oscillations in tubes the radius of which changes along their length and, in particu- 
lar, increases intermittently. This corresponds to a tube composed of tubes of different 
diameter or to the attachment of closed volumes to the ends of a tube. The model and methods 
developed in [3, 4] will be used to construct the mathematical model and solvethe problem. 

These works made assumptions regarding triviality and did not consider: I) the radial 
gradient of the acoustic pressure; 2) the radial change in the mean temperature and viscosity; 
3) heat flow and friction due to axial gradients. For a tube of variable cross section, we 
add the assumptions that the section of an elemental streamtube changes in proportion to the 
section of the tube, i.e. r(x)Ar(x) ~ r~(x), and that the radial component of the velocity 
of the gas can be ignored. The latter assumption is valid for tubes with a small change in 
section along their length or when the absolute value of the velocity is low and, titus, its 
radial component is small (for example, in the case of a sudden contraction or expansion of 
the tube section near the closed end). Allowing for these assumptions, the linearized sys- 
tem of equations for the tube of variable cross section has the form 

o_,o ~ po a i~ (x) v) +.  Opo u = o, 
o, r~ (x) ax ox 

au _~ 1 aP 1 a ( a~r ) 
OT 90 Ox r Or 

OT dTo 1 0 P  = ~ 0 (r  OT ~ 

a--# - +  u d~ po~ a~ poC~ a~ k Tr/ 

The system is closed by the linearized equation of state 

(I) 

(2) 

(3) 

T = _ _  P To 9- 

Rgo 9o 

(4) 
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